
Arithmetic Data Cube as a Data Intensive Benchmark

Michael A. Frumkin, Leonid Shabanov'
NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035-1000
frumkin@nas.nasa.gov,leonid.shabanov@crossz.com

January 23 2003

'Employee of CrossZ Solutions USA.

2

Abstract

Data movement across computational grids and across memory hierarchy of individual grid machines is known to
be a limiting factor for application involving large data sets. In this paper we introduce the Data Cube Operator on
an Arithmetic Data Set which we call Arithmetic Data Cube (ADC). We propose to use the ADC to benchmark grid
capabilities to handle large distributed data sets. The ADC stresses all levels of grid memory by producing 2d views of
an Arithmetic Data Set of d-tuples described by a small number of parameters. We control data intensity of the ADC
by controlling the sizes of the views through choice of the tuple parameters.

1 Introduction

The main object of data warehousing and On-Line Analytical Processing (OLAP), decision support database sys-
tems, data mining systems and resource brokers is a data set characterized by a number d of dimension attributes and
a measure attribute. The data set consists of tuples (il, . . . , i d , c) . Each dimension attribute ij assumes values in some
range, say in an interval [l, mj - 11, and c is a cost function (a measure) associated with the tuple (21, . . . , i d) . The
goal of OLAP is to assist users to discover patterns and anomalies in the data set by providing sort query execution
times [131.

A standard tool of OLAP is the Data Cube Operator (DCO) [3], which computes views of the data set. For a chosen
subset of k attributes a view is a set of k-tuples containing only the chosen attributes with accumulated measures of
the duplicates. If technically possible, DCO computes 2d views on all possible subsets of the dimensions. The
calculated DC reduces querys of multidimensional data to simple look-ups. There are approaches [1, 51 for mining
multi-dimensional association rules and answering iceberg queries by computing an iceberg cube, which contains only
aggregates above a certain threshold.

The input data sets and some of the materialized views often do not fit into the main computer memory, thus
DCO computation requires a careful reuse of data loaded into the main memory (and all levels of cache). As a rule,
computation of the DCO spills data across all levels of memory, making DCO especially interesting as a data intensive
benchmark.

A large number of papers is devoted to efficient computation of the DCO [6, 12, 181 and many companies have
proprietary algorithms for DCO computations. Some authors propose parallel DCO computation algorithms [8, 101.
To improve the efficiency of querying data cubes a number of publications consider calculation and storage of data
cubes as condensed cubes [17] or as other highly compressed structures [14].

We are not trying to evaluate DCO algorithms here, instead we are designing a benchmark for computational grids.
For the reference implementation we choose a greedy algorithm [6] that computes each view from the smallest parent
(a view having one more attribute). We assume that all attribute values are integers. Although real OLAP data sets
and existing OLAP benchmarks [1 1 , 161 use mostly strings as attribute values, this is not a significant limitation,
since there are techniques such as hashing for mapping strings to integers. One of the advantages of using integers as
attribute values is reduction in the size of the input data sets and materialized views.

Many data sets are available to test OLAP systems, DCO algorithms and data mining algorithms, for example, the
ABP-1 and TPC-D benchmark databases [11, 161. For benchmarking purposes the most appropriate is a synthetic data
set which can be generated by a small program, so that the data set will be scalable, the distribution of the benchmark
will be manageable, and replication of the data set on the computational grid will incur a small overhead. Also, a
synthetic data set, as in many real applications, can be generated in a distributed fashion, which saves the effort of
splitting and distributing the data set.

In available synthetic data sets the tuples are randomly generated, however there is no way to control the sizes of
the data views. In the next section we introduce the Arithmetic Data Set, which is similar to the randomly generated
data sets, but has the advantage of a priori known sizes of the views. The latter simplifies the implementation of the
greedy DCO algorithm. For real or random data, one can estimate the view sizes by sampling or analytical methods
[6, 151.

3

2 The Arithmetic Data Set

The purpose of constructing An Arithmetic Data Set is to have a data set whose view sizes can be well controlled.
An Arithmetic Data Set S is a subset of a group Q defined by

d

Q = $(z/miz)*,

where (Z/miZ)* is the set of integers modulo mi coprime with mi. An element of S can be represented by a tuple
x = (21,. . . ,xd). The subset S is defined by a seed s = (SI,. . . , Sd) E Q, a generator g = (91,. . . ,gd) E Q ,
s i , gi # 0, i = 1, . . . , d and the total number of elements n:

i= 1

We choose 1 5 gi < mi to be one of fi = I(Z/miZ)*(numbers which are coprime with mi. Let qi be the order
of gi that is the smallest integer such that g? E 1 mod(mi). Since g: can assume at most fi different values then
gf % 1 mod(mi) and qi divides fi. These tuples are different elements of Q if LCM' (q1, . . . , q d) 2 n, see Corollary
2.

Data Views. For any subset containing k of the cube dimensions I = {il, . . . , ik} c { 1,. . . , d } the I-view of
x E Q is defined as a projection of x on the face of the cube defined by I :

X I = (Xil,. . . , X i k) .

The I-view of S is comprised of the I-view of all elements of S:

View Sizes. For a given I-view we are interested to find out how many tuples there are in SI . To do this we estimate

Two tuples sIg! and sIg3 are the same iff g? = g! or gr-j = 11 considered as elements of & I . Hence, the
the multiplicity of a tuple x E SI , defined as the number of tuples of S having the same I-view as x.

multiplicity p of sIgj can be calculated as follows:

p = I{O I k < n 1 k - j 0 mod(qi), i E I}[.

Since the smallest nonzero solution of the system of congruences k - j E 0 mod(qi), i E I , is XI = LCMieI(qi) we
find that 12 J 5 p 5 LeJ + 1, which proves the following assertion.

PROPOSITION 1. Let XI = LCMiEI(qi). The multiplicity p of any tuple of an I-view of S can be estimated as

If X I > n, then the second inequality of the proposition implies that multiplicity of each element of SI is 1, hence
= n. Obviously, 5 XI. Hence, we have the following formula for ISI~:

COROLLARY 2. For the size of an I-view of S we have the following relation:

n, i f n s XI;
ISIl = { X I , otherwise.

'LCM stands for the Least Common Multiple.

.- . .

1. 421 I 2 2 * 3 * 5 . 7

4

2 1 I l l 364 I 21 1

3 Choice of the Parameters

2. 601
3.631
4. 701
5. 883

LCM
6.419
7.443
8. 647
9. 21737
10. 31769

To illustrate a possible choice of the parameters for the grid benchmarks we choose mi to be prime numbers and
gi to be generators of (Z/miZ)*, hence having period qi = f i = mi - 1. Also, we choose mi such that mi - 1 has
many small prime factors so that X I has a good chance of been small. This approach gives us good control over the
sizes of the data set and its views. Our actual choice of the mi is shown in the Table 1.

We choose4 groups of the smallest prime numbers {3,5,7}, { 11,13,17,19}, {23,29,31,37}, and {41,43,47,53,
59). For each group we choose 5 smallest primes mi such that prime factors of mi - 1 are 2 and numbers from this
group'. This set ofparametersgivesusadataset 0 f 2 ~ ~ 3 ~ ~ 5 ~ ~ 7 ~ ~ 1 1 ~ 1 3 ~ 1 7 ~ 1 9 ~ ~ 2 3 ~ 2 9 ~ 3 1 ~ ~ 3 7 ~ 4 1 ~ 4 3 ~ 4 7 ~ 5 3 ~ 5 9
different tuples and, for example we can choose n = 2 . 1 1 .23 $ 4 1 . 3 . 1 3 . 2 9 . 4 3 . 5 . 17 = 85759918530. At the
same time the 5-dimensional views relative to each of the groups is small relative to the number of the total elements
in the data set.

23 . 3 . 5 2 7 13 412 30 1
2 . 3 2 . 5 . 7 3 17 334 3 16
22 . 52 . 7 2 19 64 1 35 1
2 * 32 . 72 2 23 108 442
23 .3' . 5' . 7' = 88200
2 . 1 1 . 1 9 2 23 228 210
2 . 1 3 . 1 7 2 29 98 222
2 . 1 7 . 1 9 5 31 94 324
23 . 11 . 1 3 . 1 9 31 37 8280 10869
2" 11 . 19' 7 41 26667 15885

Table 1 . Dimensions of the Arithmetic Data Cube and their factorizations. Here "Least Generator" ~i is
the smallest generator of (Z/miZ)*, the "Generator" is the chosen generator of (Z/miZ)* and the "Exp"
is ei such that gi = 7;;.

LCM
11. 1427

1 I

23 . 1 1 . 1 3 . 1 7 - 1g2 = 7020728
2 . 2 3 - 3 1 2 2 41 595 I 714 I

12. 18353
13. 22817
14. 34337

24 . 3 1 . 3 7 3 43 8397 9177
25 . 2 3 . 3 1 3 47 15046 11409
25 . 2 9 . 3 7 3 53 15699 17169

15.98717
LCM

I ,
22 23 * 29 * 37 2) 59 62206 I 49359
25 . 2 3 . 2 9 . 312 .37 = 758228608

.

4 Air Traffic Control Example

16. 3527 2 . 4 1 . 4 3 5 3 125 1764
17. 8693 22 - 4 1 - 5 3 3 5 443 4347
18. 9677 2' . 4 1 . 5 9 2 7 128 4839
19. 11093 22 . 4 7 . 5 9 2 11 2048 5547
20. 18233 2" 43 .53 3 13 8052 91 17
LCM 23 . 4 1 * 43 * 47 .53 .59 = 2072850776

We illustrate the Data Cube Operator for an example of Air Traffic Control (ATC) data [9]. Each of about 20
national ATC Centers obtain flight data from airports and radars in real time. Typical records are shown in Table 2 and
a typical query is as follows:

*Since we use odd primes, mi - 1 always has 2 as a factor

5

Find AC type
where Busy = 1
and ETA is Between 1 1 0 5 and 1110
and destination is CLE

The queries should be executed in real time and can be posted at any of the centers, implying that the flight data
must be communicated between the centers. One possible way to insure a short query response time is to replicate
the Data Cube across the centers. This constitutes an example of a distributed dynamic DCO which requires real time
query response and DCO update. The ATC example can be extended to an example of Satellite and Spacecraft Control
system.

Table 2. Air Traffic Control Data. 'Qpical Query: Find AC type where Busy = 1 and ETA is
Between 1105 and 1110 and destination is CLE.

5 Related Work

The benchmarking of data mining systems is well established area of High Performance Computing [l l , 161.
These benchmarks are designed to compare performance of query systems running on a server. On the other hand, a
number of benchmarks have been designed for testing computational grids [2, 11, 161. The grid benchmarking effort
is currently supported by the Grid Benchmarking Research Group at the Global Grid Forum. These benchmarks are
mostly computationally intensive and are derived from NAS Parallel Benchmarks. We propose the Arithmetic Data
Cube (ADC) as a data intensive grid benchmark which extends typical data mining operations into a grid environment.

6 Conclusions

We show that ADC represents an important set of computations in the OLAP and data mining. We give an example
of a dynamic real time system performing the set of operations specified in ADC.
The ADC is data intensive since

0 it mostly involves logical operations

0 the size of the output data set can significantly exceed the size of the original data set

0 existing algorithms perform few operations per tuple per memory access (and are similar to the merge in this
respect)

The advantages of ADC as a grid benchmark are that

0 it is described by a small number of parameters and has a priori known sizes of the views

0 the views can be generated independently

0 the overhead of combining the views is predictable

L . -..

6

the data set can be partitioned into a number of independently generated subsets

the elements of the data set are pseudo random

These two properties make ADC a strong candidate for a data intensive grid benchmark to be considered by the
Global Grid Forum Grid Benchmarking Research Group (GB-RG) [4].

Bibliography

[I] K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD 1999, 359-
370.

[2] M. Frumkin, Rob F. Van der Wijngaart. NAS Grid Benchmarks: A Tool for Grid Space Exploration. Cluster

[3] J. Gray, A. Bosworth, A. Layman, and H. Prahesh. Data Cube: A Relational Aggregation Operator Generalizing

Computing, Vol. 5, pp. 247-255,2002.

Group-By, Cross-Tab, and Sub-Total. Microsoft Technical Report, MSR-TR-95-22,1995.

[4] Grid Benchmarking Research Group. http://www.ggf.org/L_WG/wg.htm

[5] J. Han, J. Pei, G. Dong, K. Wang. ESJicient Computation of Iceberg Cubes with Complex Measures. SIGMOD'OI,
Santa Barbara, CA, May 2001,l-12.

MOD, pp. 205-216, Montreal, Canada, June 1996.
[6] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Zmplernenting Data Cubes Eficiently. In Proc. of ACM SIG-

[7] IBM Quest Synthetic Data Generation Code. http://www.almaden.ibm.com/cs/quest/syndata.html.

[8] W. Liang, M. E. Orlowska. Computing Multidimensional Aggregates in Parallel. International Conference on
Parallel and Distributed Systems, Taiwan, 1998,92-99.

[9] W. Meilander, M. Jin, J. Baker. Tractable Real-Eme Air TraSJic Control Automation. Proceedings of the 14th
IASTED International Conference Parallel and Distributed Computing and Systems, Cambridge, USA, 2002,

[101 S. Muto, M. Kitsuregawa. A Dynamic Load Balancing Strategy for Parallel Datacube Computation. Proceedings

[1 11 OLAP Council /ABP-1 OLAP Benchmark, Release ZI, http://www.olapcouncil.org.

[12] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical Report RJ10026, IBM Almaden

[13] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven Exploration of OL4P Data Cubes. In Proc. Inter-

pp. 483-488.

of the second ACM international workshop on Data warehousing and OLAP, 1999,67-72.

Research Center, San Jose, CA, 1996.

national Conf. of Extending Database Technology (EDBT'98), March 1998, 168-1 82.

MOD international conference on Management of data. Madison, Wisconsin, USA. 2002.
[14] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf Shrinking the PetaCube. ACM SIG-

[151 A. Shukla, P. Deshpande, J.F. Naughton, and K. Ramasamy. Storage Estimation for Multidimensional Aggregates

[161 TPC BENCHMARK TM D (Decision Support) Standart Specijcation, Revision 1.3.1, http://www.tpc.org.

[171 W. Wang, J. Feng, H. Lu, and J. Xu Yu. Condensed Cube: An ESJicient Approach to Reducing Data Cube Size.

in the Presence of Hierarchies VLDB 1996,522-53 1.

Proceedings of the 18th International Conference on Data Engineering, 2002, 155- 165.

Aggregates. Proc. of the 1997 ACM-SIGMOD Conf., 1997,159-170.
[181 Y. Zhao, P. M. Deshpande, and J.F. Naughton. An Array-Based Algorithm for Simultaneous Multidimensional

7

